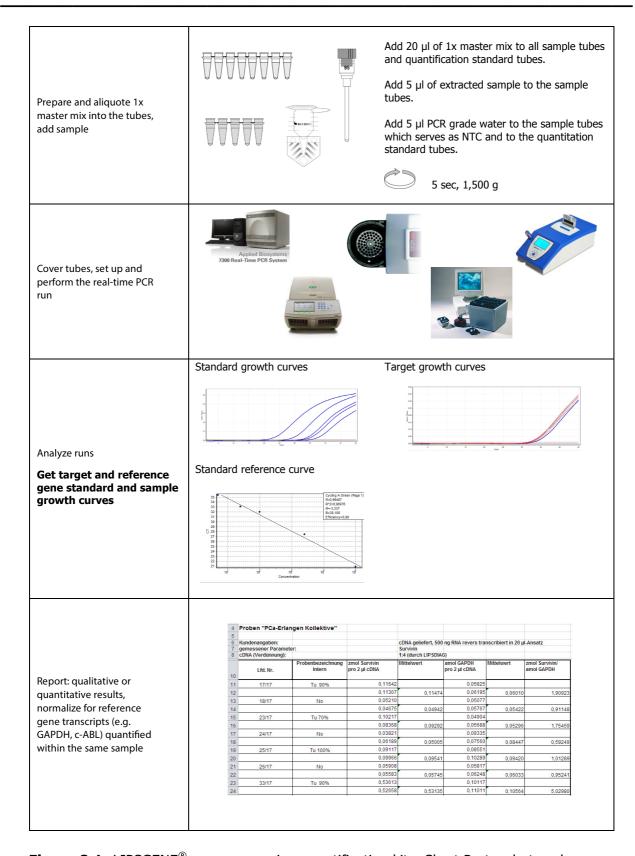

2. LIPSGENE - GENE EXPRESSION QUANTIFICATION

Explanation of the LIPSGENE Gene Expression Quantification Kits


The LIPSGENE[®] Kits are real time PCR amplification tests for quantification of target cDNA in clinical samples. All kits include standard tubes, stably coated with given amounts of synthetic standard DNA that will be amplified in parallel with the samples. To analyse the nucleic acids in the samples, the kits contain also sample tubes or strips coated with the same amplification enhancer matrix which is borne in the standard tubes, so as to guarantee the same amplification environment for both the standards and the samples.

In order to always confirm the RNA integrity of the analyzed sample as well as to correct for? RNA load, cDNA synthesis efficiency, PCR inhibitors and possible target loss during long-time storage, we strongly recommend to "normalize" the kit data to the number of reference genes or "housekeeping gene" transcripts, e.g. c-ABL or GAPDH transcripts measured within the same cDNA sample. For quantification of cABL or GAPDH cDNA please use respectively the LIPSGENE® c-ABL (Cat.no. 1030101LP-120, 120 tests for use with "Low profile" plastic supporting instruments) or the LIPSGENE® GAPDH Kits (e.g. Cat.no. 1030102RP-120, 120 tests for "Regular profile" plastic supporting instruments).

2. LIPSGENE® - GENE EXPRESSION QUANTIFICATION

Figure 2.1: LIPSGENE[®] gene expression quantification kits: Short Protocol-at-a-glance.

2. LIPSGEN® - GENE EXPRESSION QUANTIFICATION

2.1. DETECTION / QUANTIFICATION OF MINIMAL RESIDUAL DISEASE (MRD) IN HEMATOLOGY/ONCOLOGY

Minimal residual disease (MRD) is the name given to the small number of leukemic or solid tumour cells that remain in the patient during treatment or after treatment, when the patient is in remission (no symptoms or signs of disease). It is the major cause of relapse in cancer and leukemia. Up until about two decades ago, none of the methods used to assess/detect cancer were sensitive enough to detect MRD. Now, however, very precise molecular biology tests are available - based on DNA or RNA detection and these can measure minute levels of cancer cells in body fluids, blood or bone marrow samples, sometimes at a level as low as 1 cancer cell in a million of normal cells.

In cancer treatment, particularly leukemia, MRD testing has several important roles: determining whether treatment has eradicated the cancer or whether traces remain, comparing the efficacy of different treatments, monitoring patient remission status and recurrence of the leukemia or cancer and choosing the treatment that will best meet those needs (personalization of the treatment).

References

See appendix